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Abstract

A theoretical investigation has been conducted for predicting the critical liquid height and the location of
liquid entrainment during dual discharge from a stratified two-phase region through branches mounted on
a vertical wall. The two branches are horizontal and their centrelines fall in a common inclined plane. Two
models have been developed; a simplified point-sink model and a more-accurate finite-branch model.
Predictions from the two models are shown to be in good agreement for the condition of high flow rates
from the branches, while the finite-branch model is necessary for good predictions at low branch flow rates.
Influences of the various independent parameters on the predicted onset are presented and discussed.
Comparisons with experimental results are shown in Part 2 of this paper. © 2001 Elsevier Science Ltd. All
rights reserved.
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1. Introduction

Several applications involve two-phase discharge from large pipes or manifolds through single
and multiple branches. Examples of these applications include the flow through small breaks in
the cooling channels of nuclear reactors during loss-of-coolant accidents, two-phase distribution
systems where a certain incoming stream fed into a large header is divided among a number of
discharging streams, and multi-passage shell-and-tube heat exchangers. Knowledge of the flow
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phenomena involved in these applications is obviously essential for the design and performance
prediction of such devices.

For a single discharge from a large channel containing stratified two-phase flow, Zuber (1980)
pointed out that two distinct phenomena may occur depending on the location of the branch
relative to the gas-liquid interface. If the branch is below the interface, gas can be entrained into
the predominantly liquid flow through the branch. On the other hand, if the branch is located
above the interface, liquid may be entrained into the predominantly gas flow through the branch.
Knowledge of the conditions at the onsets of gas and liquid entrainment is obviously very im-
portant because these phenomena influence the mass flow rate and quality in the branch. Theo-
retical and experimental investigations were reported for determining the onsets of entrainment
under different flow configurations. The experimental studies are discussed in Part 2 of this paper,
while the focus here is on the theoretical work.

Craya (1949) developed theoretical models for the onset of liquid entrainment during discharge
from a large stratified region through a single side slot or a single side branch. He treated the slot
and the branch as a line sink or as a point sink, respectively. Soliman and Sims (1991) pointed out
that Craya’s solution for a single side slot does not reach the appropriate limits as the discharge
flow rate approaches zero and, therefore, the accuracy of Craya’s result is doubtful at low dis-
charge flow rates. A new model was developed by Soliman and Sims (1991) that took into account
the finite size of the slot. The same authors (Soliman and Sims, 1992) developed a model for the
onset of liquid entrainment in circular branches of finite size and demonstrated by comparison
with experimental data that their model provided much better accuracy than Craya’s point-sink
model for low discharge flow rates.

For the case of dual discharge, Armstrong et al. (1992a) developed a model for predicting the
onset of liquid entrainment in a system with two parallel slots. The slots were simulated as two-
dimensional line sinks. As well, Armstrong et al. (1992b) considered the problem of dual discharge
from horizontal, circular branches mounted on a vertical wall with centrelines of the branches
falling in a common vertical plane. For this geometry, Armstrong et al. (1992b) developed a
theoretical model (treating the branches as point sinks) and experimental data for the onset of
liquid entrainment with excellent agreement between data and theory. More recently, Hassan
(1995) obtained experimental data for the same geometry at low discharge flow rates and
demonstrated that the point-sink analysis of Armstrong et al. (1992b) is not capable of good
predictions at these conditions.

The long-term objective of our research program is to develop clear understanding of two-
phase flow in multi-branch distribution headers and multi-passage heat exchangers. In these
systems, the outlet branches can be located at various positions relative to each other. Keeping in
mind that the current state of knowledge is complete only for the case of a single branch, a logical
first step towards our long-term objective is to solve the case of two branches for the whole range
of independent parameters (separating distance between the branches, angular location of one
branch relative to the other, and flow rates through the branches). Therefore, the objective of the
present investigation is to develop theoretical models for the onset of liquid entrainment during
discharge from a stratified region through two horizontal branches mounted on a vertical wall
with the centrelines of the branches falling in a common inclined plane. These models should be
valid for the whole range of independent parameters. Both, point-sink and finite-branch analyses
will be used. Experimental data on gas and liquid entrainment for the two-branch geometry, as
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well as comparisons with the present theory, are presented in Part 2 of this paper in order to
validate the methodology used in the theoretical part.

2. Theoretical analysis

The configuration for the present analysis is shown in Fig. 1. A stratified layer of two im-
miscible fluids (representing the gas and the liquid) of densities p and (p + Ap) is contained in a
large reservoir. Two horizontal branches are mounted on the plane vertical wall of the reservoir
separated by a distance L (centre-to-centre) and the plane passing through the branch centrelines
is inclined at an angle « from the horizontal x-axis. The branches are assumed to have a square
(d x d) cross-section for mathematical convenience. However, as shown later, the results for the
square cross-section are very close to those of a circular branch. Discharge is induced from the
lighter fluid through the lower and upper branches with mass flow rates of 7z; and r,, respectively.
There is a critical height / (measured from the centreline of the lower branch) at which the heavier
fluid starts flowing into one of the two branches. This phenomenon, called the onset of liquid
entrainment, may occur at branch 1, branch 2, or simultaneously at both branches, depending
on my, 1y, and «. The purpose of this analysis is to predict # and the branch at which the
phenomenon occurs.

The analysis assumes steady flow and that both fluids are incompressible with constant
properties. Viscosity and surface-tension effects are neglected while gravity and inertia forces are
dominant; therefore, potential flow is assumed throughout the flow field. The solution method
follows Craya’s (1949) approach, applied successfully by Armstrong et al. (1992b), consisting of
three steps as follows:
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Fig. 1. Coordinate system and relevant parameters for finite-branch analysis.
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(a) Determine the equilibrium condition of the interface.

(b) Determine the velocity field in the lighter fluid.

(c) Impose equality of the velocity and its gradient at linking point B (shown in Fig. 1) as the

criteria for the onset.

There are two alternatives in executing step (b) above. One alternative is to treat the branches
as point sinks (see Fig. 2), which simplifies the analysis and leads to a simple algebraic formulation
for the critical height. The second alternative is to take into consideration the finite size of the
branches (as shown in Fig. 1) with the expected consequence of a more complex (but closed form)
result. Previous results for a single branch (Soliman and Sims, 1992) have shown that for low
branch flow rates, the point-sink analysis does not provide good accuracy and the finite-branch
analysis is necessary. However, for moderate and high branch flow rates, the two analyses were
found to agree closely. In the present work, results will be obtained using both, the point-sink and
finite-branch analyses.

2.1. Equilibrium of the interface

The equilibrium at the interface is controlled by a balance between gravity and inertia forces.
Applying Bernoulli equation along a streamline coincident with the interface from the side of the
lighter (moving) fluid, we get

pV?

2
where P is the static pressure, V the velocity, g the gravitational acceleration, ¢ the deflection of the

interface (shown in Figs. 1 and 2), and Cis an arbitrary constant. Along the same streamline from
the side of the heavier (stationary) fluid, Bernoulli equation gives

P+ + pgt = C, (1)
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Fig. 2. Coordinate system and relevant parameters for point-sink analysis.
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P+ (p+Ap)gt =C. (2)
Subtracting Eq. (2) from Eq. (1), we get
V:ooA

Linking point B (shown in Figs. 1 and 2) corresponds to the location t = 4 — s, where / is the
critical height measured from the centreline of branch 1 and s is the vertical distance between
linking point B and the centreline of branch 1. Therefore, the velocity at linking point B can be
obtained from

Vs _Ap
7*7&’(}1—5)- (4)

Egs. (1)—(4) apply to both the point-sink and finite-branch analyses.
2.2. Velocity field in the lighter fluid (point-sink analysis)

With reference to Fig. 2, the two branches are simulated as point sinks with strengths n; and n,,

where the strength n and the mass flow rate i are related by
m

(5)

In developing the velocity field in the lighter fluid, the presence of the heavier (stationary) fluid
is ignored. Therefore, the flow field is treated as a semi-infinite medium extending over
—00 < x <00, —0 <y < oo, and 0 <z < oo. The three-dimensional flow is symmetric around a
plane that contains the two point sinks and the z-axis. Therefore, some analogy exists with the
case of two-dimensional flow, thereby allowing the introduction of a stream function and a
velocity potential. Following Milne-Thomson (1968), the potential function ¢ is given by

_om_m (©)

where r and r, are the radial distances from sinks 1 and 2, respectively, as shown in Fig. 2.
Expressing 7, in terms of other parameters, we get

n
— A 7 7
¢ r \r*4+L>—2rLcosf @

where 0 is an angle measured from the plane of symmetry, as shown in Fig. 2. The radial velocity

V. at any point in the flow domain can be obtained as
0¢ n ny(r — L cos 0)
h=—5 =2 7 (8)
r r* (24 L2 —2rL cos 0)

Linking point B corresponds to the location, where 6 = (3n/2 — o) and » = 5. Thus,

nj

2
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2.3. The critical height (point-sink analysis)

There are two issues to consider: (a) the sink at which the onset of entrainment would occur,
and (b) the critical height 4 corresponding to this onset. As illustrated in Fig. 3, we will first
assume that the onset of entrainment occurs at sink 1 and calculate the appropriate 4, then repeat
the process at sink 2 and calculate 4,. It should be noted from Fig. 3 that both %, and 4, are
measured from sink 1. Therefore, by comparing 4, and #,, the location of the onset of entrainment
and the critical height for the system / can be determined. If #; > h,, then the onset occurs at sink
1 and & = hy. For hy > h;, the onset occurs at sink 2 and 4 = h,.

For determining the critical heights (#; and 4,), we followed the procedure applied successfully
by Armstrong et al. (1992b). For fixed values of p,Ap,g,o,L,n;, and n,, Eq. (9) provides a
specific relation between V7 /2 and s represented by a single curve, while Eq. (4) produces a set of
parallel straight lines whose locations depend on the value of /. For large values of 4, the straight
line and the curve do not intersect, while two points of intersection are possible with small values
of /. There is one value of / that corresponds to a single intersection with the straight line given by
Eq. (4) forming a tangent to the curve given by Eq. (9). The hypothesis here is that this value of /4
is the critical value for the onset. By equating the values of Vj#/2 and their first derivatives with
respect to s, we get (after reduction) the following non-dimensional relations for the onset of
entrainment at sink 1:

32 = [A1Fr} + A7 | [AsFry + AaFry ), (10)
and
1 AlFI"T‘FAzFI";
H, = R et E 11
1=5 g [A3Fr1‘+A4Fr§ ’ (1

where Fr* is the modified Froude number given by
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Fig. 3. Coordinate system and relevant parameters for entrainment at both sinks.
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Fe = W@ (12)
V &pL>Ap
Sy =s1/L, (12b)
Hl :hl/L, (12(3)
A =1/, (12d)
. s , 132
Ay = (81 +sina)/ [(Sl +sina)” + cos oc} , (12e)
43 =1/8}, (12f)
and
oo 1 : . v , 152
Ay = |(S) +sina)” — 5 cos” [(Sl +sino)” +cos” o . (12g)

The critical height for the onset of entrainment at sink 2 could be derived using the same
technique as for sink 1 following the situation described in Fig. 3, resulting in

32 = [BiFry + BoFr| | [BsFry + ByFri |, (13)
and
. 1 BIF}’*-f-BzF}”*
H =S+ |21 14
2 s 2+4{B3Fr§+B4Fr]‘]’ (14)
where
S = /L, (15a)
Hy =hy/L, (15b)
B, =1/S;, (15¢)
B, = (S, — sina)/[(S; — sina)” 4 cos o] /2, (15d)
By =1/S;, (15¢)
and
. 2 1 2 . 2 2 5/2
By = |(S; —sina) — 5 cos a]/[(Sz—smoc) +cos"al| . (15f)

For given values of 71,15, p, Ap, L, and o, the values of Frj and Fr; can be obtained from Eq.
(12a), the corresponding values of S| and S, can be obtained from Egs. (10) and (13), respectively,
and the values of H; and H, can be obtained from Egs. (11) and (14), respectively. By comparing
H, and H,, the value of H = h/L can be determined as explained earlier. The form of Egs. (10),
(11), (12a)—(12g), (13), (14), (15a)—(15f) suggests that H is dependent only on Fi} , Fr; and o for all
values of L.

For the special case of a single discharge (i.e., Fr; =0), Eqgs. (10) and (11) produce
H, = 0.625(Frf)0'4, which is consistent with previous results (Craya, 1949). For o = 0, Egs. (10),
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(11), (12a)—(12g) for sink 1 are identical to Eqgs. (13), (14), (15a)-(15f) for sink 2, as expected from
symmetry.

We note that for the limiting case Firj = Fi; = 0, the above analysis converges to H, = H, = 0.
For a branch of a finite size (circular with diameter d or square with side d), the correct limit
should be & = d/2. Therefore, the accuracy of the point-sink analysis may be questionable at low
discharges. In the following section, a more elaborate analysis is presented for improved accuracy
at low values of Frj and Fr;. This analysis is based on all the simplifying assumptions used in the
previous point-sink analysis, except for the adoption of finite branch sizes.

2.4. The finite-branch analysis

Ignoring the presence of the heavier fluid and referring to Fig. 1, the flow field in the lighter
fluid extends over the semi-infinite region defined by —oco < x < 00, —00 < y < 00, and 0 <z < oo.
The flow is caused by two discharges with uniform velocities; 7;; from branch 1 situated at
—d/2<x<d/2,—-d/2<y<d/2, and z=0, and V,, from the upper branch situated at
(Lcosa—d/2)<x<(Lcosa+d/2), (Lsina—d/2)<y<(Lsina+d/2), and z=0. With the
assumptions stated above, the velocity field is obtained from the continuity equation,

oV, N oV, n o 0
ox 9y oz
where V;, V,, and V. are the velocity components in the x, y, and z directions. Introducing a scalar
potential function ¢, such that

(16)

K:%,Vy:%,andz:%—f, (17)
we get the well-known Laplace equation
2 2 2
L g +20-0 (18)
Eq. (18) is subject to the following boundary conditions:
at z =0,
% = —Vy,—d/2<x<d/2 and—-d/2<y<d/2

= — Vp,(Lcosoa —d/2) <x< (Lcosa+d/2) (19)
and (Lsina —d/2)<y<(Lsina+d/2)
0 at all other values of x and y

as x — 00,y — +o00, or z — oo, ¢ is finite. (20)

A solution of Eq. (18) satisfying boundary conditions (19) and (20) was obtained using the
method of separation of variables. Details of the derivation are available in Maier (1998). A new
expression for Vi}/2 was derived from the three-dimensional velocity profile. By equating the
values of V/2 from this expression and Eq. (4), as well as their first derivatives with respect to s,
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the following non-dimensional relations were obtained for determining the critical height 4, for
the onset of entrainment at branch 1:

32(d/L)’ = [C\Fr; + CoFr)[C3Fr 4 CuFr), (21)
and
1 d C]F}"*—i-CzFl"*
H=8+-|+)|at—>22 22
: 1+4(L> [C3Fr’{+C4Fr§}’ (22)
where,
F1(0.5,0.5,1.5; —0.25E;%)  ,F(0.5,0.5,1.5; —0.25E;>
c 1(0.5,0.5,1.5; —0.25E;%)  ,F(0.5,0.5,1.5; —0.25E, )’ (23a)
E] EZ
_[2F(0.5,0.5,1.5, —E2E5%)  »F(0.5,0.5,1.5; —EZE;?)
G = Es -
E; E,
L (0.5,0.5,1.5; —E3E;*) ,F(0.5,0.5,1.5; —E3E;?) (23b)
5 E4 E3 )
oL 2Fi(1.5,1.5,2.5,-0.25E,%)  ,F(1.5,1.5,2.5; —0.25E?)
P24 E} E}
_ 11,A(05,0.5,1.5;-0.25E;%)  ,F1(0.5,0.5,1.5; —0.25E?) (230)
2 E3 E} ’
o= g oF(15,1.5,2.5, —E2E%)  oF(1.5,1.5,2.5; —EZE5?)
Tt E? E
= 2F(1.5,1.5,2.5) —E2E;?)  HF(1.5,1.5,2.5, —E3E,”)
5 E} E,
L[ [2Fi(0.5,05,15; —E;E;?)  2Fi(0.5,0.5,1.5; —E3E;?)
2 E2 E?
F1(0.5,0.5,1.5; —E2E;%)  ,F1(0.5,0.5,1.5; —E2E,>
+E5{21(05,05,25, 2 3)_21(05,05,25, 2 4)}] (23d)
E3 Ej
E,=E +1, (23f)
Ey = (S +sina)(L/d) — 0.5, (23g)
E,=E;+1, (23h)
Es = (L/d)coso — 0.5, (231)
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and

E¢=Fs+ 1.

(23))

Egs. (21) and (22) have the same form as Egs. (10) and (11), but with different coefficients. The
function ,F; (a,b,c;w) appearing in Egs. (23a)—(23)) is the complex hypergeometric function of
the variable w with parameters a,b, and ¢. The procedure outlined by Press et al. (1992) for

evaluating this function was followed in the present computations.

The critical height for the onset of entrainment at branch 2 could be derived using the same

technique as for branch 1. The result can be placed in the following form:

32(d/L)° = [D\F¥ + D,Fri|[DsFr + DyFr],

and

1 (d) |:D1FV§ +D2FI"T:|
L Y

Hy+sina=8, +-
2sime =5y D3I + DyFr

where,

2F1(0.5,0.5,1.5;-0.25G2)  ,F(0.5,0.5,1.5;—0.25G;2)
l = - )

G1 GZ

2F1(0.5,0.5,1.5; -G2G;2)  ,F(0.5,0.5,1.5; —G2G,?)
D2 — G6 -

Gs G,
2F(0.5,0.5, 1.5, -GIG,>)  »F(0.5,0.5, 1.5; —G§G32)}

G
=+ 5[ Ga G

i
Dy= o

2F(1.5,1.5,2.5,-025G,%)  5F(1.5,1.5,2.5; —0.25G12)]
24

G Gi

1[,F(0.5,0.5,1.5;—0.25G5%)  ,F(0.5,0.5,1.5; —0.25G?)

) G2 - G2 )
2 1

2

b= L) 2A(15,15.25 -GiG?) oFi(15,15,25:-GiG,”)
Y6 e G! Gt
L (15,1525 -GIG?) 5R(15,15,2.5 -GiG,?)
s G G
1 [2F(0.5,051.5-GiG,?) oFi(1.5,1.5,2.5 ~GiGy?)
217 G2 G2
o (05,0515 -GIG?) ,F(0.5,0.5,1.5 ~GiG,?)
5 G2 - G2 )
3 4

(24)

(25)

(26a)

(26b)

(26¢)

(264)
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G, =—-S(L/d)—-0.5, (26e)

G, =G +1, (26f)

Gy = (S, —sina)(L/d) — 0.5, (26g)

Gy=Gs+1, (26h)

Gs = —(L/d)cosa— 0.5, (261)
and

Ge=Gs+ 1. (26j)

According to Egs. (21), (22), (23a)—(23)), (24), (25), (26a)—(26j), the critical heights H, and H,
are dependent on Fry, Fr;, (L/d), and o. For given values of these independent parameters, 4, can
be determined from Egs. (21), (22), (23a)—(23)), H, can be determined from Egs. (24), (25), (26a)—
(26j), and H is selected as the larger of the two.

3. Theoretical results and discussion

In the finite-branch analysis, the branches were assumed to have a square cross-section, rather
than the commonly used circular one. With this assumption, it was possible to develop a closed-
form solution for the critical height at the onset. Before presenting the results of the present
analysis, an assessment of the influence of this assumption will be made. Fig. 4 shows three sets of
results for discharge from a single horizontal branch mounted on a vertical wall. These results
correspond to the present point-sink analysis, the present finite-branch analysis, and a previous
analysis by Soliman and Sims (1992) for a finite branch of a circular cross-section. All results are
presented in terms of //d versus Fr, where the Froude number Fr is given by

10_"""] T LR | T T ]
Finite-Branch Analysis
s Point-Sink Analysis
----- Soliman and Sims (1992)
o
S
1L .
- ,.’./A/ J
01 PP | P 1 R sl PR |
.03 A 1 10 100

Fr

Fig. 4. Comparison among three predictions of the critical height for single discharge.
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Ved pAp

Fig. 4 shows that the results of the square and circular branches are practically identical for all
values of Fr. Both sets of results converge to the correct limit #/d = 0.5 as Fr — 0. The deviation
between these two sets of results and the point-sink results is large at low Fr. However, for
Fr > 10, the three sets of results are in close agreement.

According to the present finite-branch analysis, H = H(Fr}, Fr;,L/d, o). If we use Fr, rather
than Fr*, the correlation would still contain four independent variables, i.e., H = H(Fr|, Fry,
L/d, o). Since Fr is more commonly used in the literature and there is no loss in generality by using
it, we decided to present all remaining results in terms of Fr, rather than Fr*.

Fig. 5 shows a comparison between the results from the point-sink analysis and the finite
branch analysis for o = 90° and L/d = 2. In this case, entrainment always happens at branch 1.
For low values of Frr; and Fi,, large deviation can be seen in the predicted values of //d from the
two models. The deviation decreases as Fr; and/or Fr, increase. For example, this deviation is
small at Fr; > 10 for all values of Fr,, or at Fr, > 45 for all values of Fr;. The results in Fig. 5
confirm that the more-accurate finite-branch analysis must be used for conditions of low Fi; and
Fl"z.

A sample of the results from the finite-branch analysis is presented in Figs. 6 and 7 with
L/d =2 in both sets of results. In Fig. 6, corresponding to o = 30°, the behaviour of %/d is
presented as a function of Fr; and Fr,. For a fixed value of Fir, (e.g., Fi, = 30), the onset of

Fr=(L/d)"’F* = (27)

5

B ]
e - ]
0.5F Fr2=30 .
Fr,=15
o YFr=0
," Finite-Branch Analysis
0.4 i RSNk Anglysis |
0.01 0.1 1 10 100
Fr

1

Fig. 5. Comparison between the point-sink and finite branch models for « = 90° and L/d = 2.
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5

°
< 1 \
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0.01 0.1 1 10 100
Fr1

Fig. 6. Entrainment predictions for o = 30° and L/d = 2.

5

°
£ 1
0.5
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Fr,

Fig. 7. Entrainment predictions for o = 60° and L/d = 2.
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entrainment occurs at branch 2 for low values of Fry. There is a gentle increase in #/d as Fr
increases up to the point where the onset of entrainment occurs simultaneously at both branches
(Fr; = 5 when Fr, = 30). Beyond this point, the onset shifts to branch 1 and 4/d increases sig-
nificantly with Fr. As expected, for a fixed a, the value of Fr; at the point of simultaneous onsets
increases as Fi, increases. As well, comparing the results in Figs. 6 and 7, we can see that for a
fixed Fi,, the value of Fi at the point of simultaneous onsets decreases as o increases. Comparing
the results in Figs. 5-7, it can be seen that values of //d for entrainment at branch 2 drop sig-
nificantly as o increases at the same values of Fr; and Fr,. This trend is consistent with the fact that
as o increases, the vertical distance between branch 2 and the interface increases and, therefore, 4,
(measured from centreline of branch 1, as shown in Fig. 3) decreases.

The influence of o on A/d is examined in detail in Figs. 8 and 9. It is clear from Fig. 8 (cor-
responding to Fr, = 30 and L/d =2 ) that i/d decreases as o increases, particularly when the
onset of entrainment occurs at branch 2. However, a reversal in trend can be seen in Fig. 9
(corresponding to Fr, = 30 and L/d = 4), where the values of 4/d for « = 90° exceed those for
o = 40°. For both angles, the onset is taking place at branch 1. This reversal of trend raises a
question about the effect of o on the velocity distribution near branch 1 for fixed values of Fr, Fi,
and L/d. This question is addressed later in connection with Fig. 11.

The influence of L/d on h/d is presented in Fig. 10 for Fr, = 30 and o = 60°. These results show
that 4 /d decreases as L/d increases for the same Fry, Fi,, and «. This trend is consistent with the
physics of the problem since an increase in L/d decreases the influence of branch 2, thus moving

3
< 1
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X Predicted Simultaneous Point .
03 PEERETTT | METEETTI | PECECRTTIT | PEEETITT
0.01 0.1 1 10 100
Fr

1
Fig. 8. Influence of o on %/d for Fr, =30 and L/d = 2.
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Fig. 9. Influence of o on #/d for Fr, = 30 and L/d = 4.
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Fig. 10. Influence of L/d on h/d for Fr, = 30 and o = 60°.
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the results towards the case of single discharge. Actually, Fig. 10 shows that the single-discharge
performance is closely approached at L/d = 8.

An interesting way of presenting the results is shown in Fig. 11, where //d is plotted against o
for various values of Fr; with Fi, = 30 and L/d = 2. This figure shows that for Fr; > Fr,, the onset
of entrainment always occurs at branch 1 and 4/d decreases slightly with «. For Fry = Fi,, the
onset of entrainment occurs simultaneously at branches 1 and 2 for « = 0. Beyond that point,
the onset of entrainment shifts to branch 1 with a slightly decreasing #/d with o. For Fry < Fr,, the
onset of entrainment occurs first at branch 2 up to a certain value of o (where simultaneous
entrainment occurs), beyond which entrainment shifts to branch 1. The value of o at the simul-
taneous-entrainment point increases as Fr; decreases. For Fi; = 0, the onset of entrainment occurs
at branch 2 for all a. After the entrainment shifts to branch 1, the behaviour of 4/d against «
appears to depend on the value of Fr. For Frry > 5, h/d decreases slightly as « increases, while for
Fry = 0.1 and 1.0, #/d appears to increase slightly with « (see Fig. 11). This reversal of trend is
predicted by both, the point-sink and finite-branch analyses. In order to explore the validity of
this trend, we examined the formulation of 73 given by Eq. (9),

m ny(s + Lsin o)
s% (2 +L? +2sLsina)”?

4 (28)

For fixed values of n; and n, (i.e., fixed Fr; and Fr), and also fixed values of s and L, we can
determine the effect of « on 73. The first term in the right-hand side of Eq. (28) is fixed (effect of

h/d

1----- Point-Sink
1.04 Analysis Moot ------4
Finite-Branch q
Analysis O\ _..cac---
054 X Simultaneous
0.3 Loint

0 10 20 30 40 50 60 70 80 90
o , degrees

Fig. 11. Entrainment predictions from both models for Fr, = 30 and L/d = 2.
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sink 1), while the second term (effect of sink 2) varies with o. Calculating 0V /0o and equating the
result to zero, we get

s/L = (V'8 +sin* o — sina)/4. (29)

At o = 30°, Eq. (29) gives s/L = 0.593. Upon substituting s/L = 0.593 in 0V3/00, we found
0V /0o > 0 for 0 <o < 30°,00 /00 = 0 at oo = 30° and 0V /00 < 0 for 30 < o < 90°. These results
suggest that sink 2 does not always aid sink 1 in entraining. Depending on «, sink 2 may have an
aiding or opposing effect on entrainment at sink 1. This behaviour explains the reversal in trend in
Figs. 9 and 11.

Experimental validation of the theoretical results presented in this paper is provided in the
companion paper by Maier et al. (2001).

4. Concluding remarks

The phenomenon of the onset of liquid entrainment was investigated theoretically for the
condition of simultaneous discharge from a stratified two-phase region through two horizontal
branches mounted on a vertical wall with the centrelines of the branches falling in an inclined
plane with an angle « from the horizontal. Two models (a point-sink model and a finite-branch
model) were developed for predicting the location of the onset (branch 1 or 2) and the critical
height at the onset. Predictions from the two models are shown to be in good agreement for
conditions of high Fr; and/or high Fr,. However, when both Fr; and Fr, are low, the point-sink
model does not provide accurate predictions, and the application of the finite-branch model is
recommended for these conditions.

Effects of the four independent parameters Fry, Fr,,L/d, and o on h/d were investigated. It is
shown that //d increases as Firy or Fr, increases, however, for given values of L/d and o, the
location of the onset depends on the relative values of Fr; and Fr,. The effect of L/d is monotonic
with //d decreasing with an increase in L/d. At L/d of about 8, the results approach the case of a
single discharge. An interesting behaviour was found while examining the effect of o at fixed
Fry, Fry, and L/d. It is shown that if the onset occurs at branch 1, #/d may increase or decrease
with increasing «. An explanation is provided for this mixed trend.
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